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Plan for today

I’ll be reporting on the following papers:
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with applications to topology, accepted to Topology Appl.

[54] Assaf Rinot, R.S and Stevo Todorčević, A new small Dowker
space, submitted April 2022.
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Motivation

A standard question in mathematics asks what properties are
preserved under taking products.

• The product of two regular topological spaces is regular.
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• The product of two regular topological spaces is regular.

In contrast, the Sorgenfrey line Rl is a regular Lindelöf (hence
normal) space whose square is not normal (hence, non-Lindelöf).
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Motivation

The property of a space X called binormal, that the product of X
with the closed unit interval be normal, had long been a standard
hypothesis for certain homotopy extension theorems.

This raise the question:

Question (C. H. Dowker, 1951)

Is there a normal topological space whose product with the unit
interval is not normal?

Such a space is called Dowker .

4 / 18



Motivation

The property of a space X called binormal, that the product of X
with the closed unit interval be normal, had long been a standard
hypothesis for certain homotopy extension theorems.

This raise the question:

Question (C. H. Dowker, 1951)

Is there a normal topological space whose product with the unit
interval is not normal?

Such a space is called Dowker .

4 / 18



Motivation

The property of a space X called binormal, that the product of X
with the closed unit interval be normal, had long been a standard
hypothesis for certain homotopy extension theorems.

This raise the question:

Question (C. H. Dowker, 1951)

Is there a normal topological space whose product with the unit
interval is not normal?

Such a space is called Dowker .

4 / 18



The Dowker space problem

Theorem (C. H. Dowker, 1951)

A normal space X is Dowker iff there exists a ⊆-decreasing
sequence ⟨Dn | n < ω⟩ of closed sets s.t.:

1.
⋂

n<ω Dn = ∅;
2. if, for every n < ω, Un is some open set covering Dn, then⋂

n<ω Un ̸= ∅.
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The Dowker space problem (cont.)

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size ℵ1.

Curiously, the existence of a Souslin tree was only shown to be
consistent around 1967.

Does the existence of a Dowker space follow from ZFC?
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The Dowker space problem (cont.)

Theorem (M. E. Rudin, 1972)

There exists a Dowker space of size (ℵω+1)
ℵ0 .

https://yewtu.be/TL-QWMr7-9E

7 / 18



The Dowker space problem (cont.)

Theorem (Balogh, 1996)

There exists a Dowker space of size 2ℵ0 .

Theorem (Kojman-Shelah, 1998)

There exists a Dowker space of size ℵω+1.

Whose space is actually smaller?

Conjecture (M. E. Rudin, 1990)

There exists a Dowker space of size ℵ1.
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The small Dowker space problem

The list of known sufficient conditions for the existence of a
Dowker space of size ℵ1 include

CH (Juhász, Kunen and Rudin,
1976), ♣ (de Caux, 1977), a Luzin set (Todorčević, 1989), and a
certain tailored instance of a strong club-guessing principle
(Hernńdez-Hernńdez and Szeptycki, 2009).

In [54], we present a new sufficient condition, namely, the following
weakening of the continuum hypothesis:

Definition (Broverman-Ginsburg-Kunen-Tall, 1978)

|• asserts there is a list ⟨Aα | α < ℵ1⟩ of infinite subsets of ℵ1 such
that for every uncountable B ⊆ ℵ1, there is α < ω1 with Aα ⊆ B.
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Diagram of implications

Along the way, we unify the above-mentioned results, factoring the
Dowker space constructions through a new ‘guessing’ principle that
we call ♣AD.

♢

♣ CH Souslin tree

|• Luzin set

♣AD

Dowker space of size ℵ1 ¬PFA
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♣AD

We denote by L the set of all nonzero limit countable ordinals.
For every infinite ordinal β < ω1, we denote by αβ the unique
α ∈ L such that α ≤ β < α+ ω.

Definition ([48])

♣AD asserts there is a matrix ⟨Aα,n | α ∈ L, n < ω⟩ such that:

0. for every α ∈ L, ⟨Aα,n | n < ω⟩ consists of pairwise disjoint
cofinal subsets of α;

1. for every uncountable B ⊆ ℵ1, there is α ∈ L such that
sup(Aα,n ∩ B) = α for all n < ω;

2. for all (α, n) ̸= (β,m), sup(Aα,n ∩ Aβ,m) < α.
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♣AD

ω1

β

α

Aα,m

Aβ,n

Disjointifying initial segments

For every ϵ < ℵ1, there exists a map f : (L ∩ ϵ)× ω → ϵ such that

1. f (α, n) < α;

2. {Aα,n \ f (α, n) | (α, n) ∈ dom(f )} is a pairwise disjoint family.
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Constructing the space
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A few promises
Our space X = (X , τ) will have underlying set ω1 × ω.
For all B ⊆ X and j < ω, we write πj(B) := {ξ < ω1 | (ξ, j) ∈ B}
for its j th-section.

ω1

ω1 × {1}

ω1

ω1 × {0}

ω1

ω1 × {2}

. . .B
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of (β + 1) × (n + 1), and for every j ≤ n, πj(N \ {x}) will be a
cofinal subset of αβ.

Consequence 1

For all δ < ω1 and n < ω, δ × n is τ -open, and Dn := ω1 × (ω \ n)
is τ -closed. ⟨Dn | n < ω⟩ is ⊆-decreasing, and

⋂
n<ω Dn = ∅.

The first part implies that X is not Lindelöf.
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For every x = (β, n) in X \ (ω×ω), each N ∈ Nx will be a subset

of (β + 1) × (n + 1), and for every j ≤ n, πj(N \ {x}) will be a
cofinal subset of αβ.

Consequence 2: The domino effect

For every (α, j) ∈ L× ω, the τ -closure of the strip [α, α+ ω)× {j}
covers the following tail of ω1 times a tail of ω:

(ω1 \ (α+ ω))× (ω \ j).
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ω1

ω1 × {j}

α

α+ ω

ω1

ω1 × {0}

. . .

ω1

ω1 × {j + 1}

. . .[α, α+ ω)× {j}

(ω1 \ (α+ ω))× (ω \ j)
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The actual construction

Re-index ⟨Aα,n | α ∈ L, n < ω⟩ as ⟨Aj
β,n | ω ≤ β < ω1, j ≤ n < ω⟩

such that, for every α ∈ L,

{Aα,n | n < ω} 1−1
== {Aj

β,n | α ≤ β < α+ ω, j ≤ n < ω}.

So, each Aj
β,n is a cofinal subset of αβ.

▶ For x ∈ ω × ω, let Nx = {{x}}.
▶ For x = (β, n) in X \ ω × ω, let Nx := {Nϵ

x | ϵ < αβ}, where

Nϵ
x := {x} ∪

⋃
j≤n

((Aj
β,n \ ϵ)× {j}).
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*The epsilons are there to ensure that the outcome space X is T1.
Indeed,

⋂
Nx = {x}.
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((Aj
β,n \ ϵ)× {j}).

and πj(N
ϵ
x \ {x}) = Aj

β,n \ ϵ is a cofinal subset of αβ, as promised.
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The actual construction

Re-index ⟨Aα,n | α ∈ L, n < ω⟩ as ⟨Aj
β,n | ω ≤ β < ω1, j ≤ n < ω⟩
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▶ For x ∈ ω × ω, let Nx = {{x}}.
▶ For x = (β, n) in X \ ω × ω, let Nx := {Nϵ

x | ϵ < αβ}, where

Nϵ
x := {x} ∪

⋃
j≤n

((Aj
β,n \ ϵ)× {j}).

Consequence 3

Given (β, n) ∈ X \ ω × ω and B ⊆ X , if there exists j < ω such
that sup(Aj

β,n ∩ πj(B)) = αβ, then (β, n) ∈ cl(B).
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Verifications

Lemma
Every τ -closed uncountable B ⊆ X contains a ‘tail’, i.e., there is
(γ, j) ∈ L× ω such that (ω1 \ γ)× (ω \ j) ⊆ B.

Proof. Given an uncountable B ⊆ X , find the least j < ω such that
πj(B) is uncountable.
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such that sup(Aα,n ∩ πj(B)) = α for all n < ω.

In particular, sup(Aj
β,j∩πj(B)) = α for all β ∈ [α, α+ω). So, the τ -

closure of the countable set Y := B∩(α×{j}) covers [α, α+ω)×{j}.
By the domino effect, the τ -closure of Y moreover covers

(ω1 \ (α+ ω))× (ω \ j).

The above proof shows that the space is hereditary separable, so
altogether X is an S-space.
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Verifications (cont.)

To verify normality, let K0,K1 be two disjoint τ -closed subsets of
X . As any uncountable closed set contains a ‘tail’, at least one of
the sets must be countable. So, one of these sets is covered by
ϵ× ω for some ϵ ∈ L. Now, construct two disjoint τ -open sets
V0,V1 using the feature of disjointifying initial segments.

Finally, to prove that X is Dowker, recall that each
Dn := ω1 × (ω \ n) is an uncountable τ -closed set, and that⋂

n<ω Dn = ∅. We need to show that, if, for every n < ω, Un is
some open set covering Dn, then

⋂
n<ω Un ̸= ∅.

For each n < ω, Fn := X \ Un is a closed set disjoint from Dn.
Since Dn is uncountable, Fn must be countable. So

⋃
n<ω Fn is

countable, and hence
⋂

n<ω Un = X \
⋃

n<ω Fn is nonempty. ■
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Thank you!
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