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Plan for today

I'll be reporting on the following papers:

[48] Assaf Rinot and R.S., A guessing principle from a Souslin tree,
with applications to topology, accepted to Topology Appl.

[54] Assaf Rinot, R.S and Stevo Todorcevi¢, A new small Dowker
space, submitted April 2022.

2/18



Motivation

A standard question in mathematics asks what properties are
preserved under taking products.

3/18



Motivation

A standard question in mathematics asks what properties are
preserved under taking products.

e The product of two regular topological spaces is regular.

3/18



Motivation
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preserved under taking products.

e The product of two regular topological spaces is regular.

In contrast, the Sorgenfrey line R, is a regular Lindelof (hence
normal) space whose square is not normal (hence, non-Lindel6f).
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Motivation

The property of a space X called binormal, that the product of X
with the closed unit interval be normal, had long been a standard
hypothesis for certain homotopy extension theorems.

This raise the question:

Question (C. H. Dowker, 1951)

Is there a normal topological space whose product with the unit
interval is not normal?

Such a space is called Dowker .
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The Dowker space problem

Theorem (C. H. Dowker, 1951)

A normal space X is Dowker iff there exists a C-decreasing
sequence (D, | n < w) of closed sets s.t.:

L. ﬂn<w D” = (Z)'.
2. if, for every n < w, U, is some open set covering D, then

nn<w U” 7é @
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The Dowker space problem (cont.)

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size W;.
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consistent around 1967.
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The Dowker space problem (cont.)

Theorem (M. E. Rudin, 1955)
If there is a Souslin tree, then there is a Dowker space of size W;.

Curiously, the existence of a Souslin tree was only shown to be
consistent around 1967.

Does the existence of a Dowker space follow from ZFC?
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The Dowker space problem (cont.)

Theorem (M. E. Rudin, 1972)

There exists a Dowker space of size (R, 1).

https://yewtu.be/TL-QWMr7-9E
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The Dowker space problem (cont.)

Theorem (Balogh, 1996)

There exists a Dowker space of size 2%°.
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The Dowker space problem (cont.)
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There exists a Dowker space of size X,,41.
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The Dowker space problem (cont.)

Theorem (Balogh, 1996)

There exists a Dowker space of size 2%°.

Theorem (Kojman-Shelah, 1998)
There exists a Dowker space of size X,,41.

Whose space is actually smaller?

Conjecture (M. E. Rudin, 1990)

There exists a Dowker space of size Nj.
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The small Dowker space problem

The list of known sufficient conditions for the existence of a
Dowker space of size Ny include
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The small Dowker space problem

The list of known sufficient conditions for the existence of a
Dowker space of size N; include CH (Juhdsz, Kunen and Rudin,
1976), & (de Caux, 1977), a Luzin set (Todorcevi¢, 1989), and a
certain tailored instance of a strong club-guessing principle
(Hernndez-Hernndez and Szeptycki, 2009).

In [54], we present a new sufficient condition, namely, the following
weakening of the continuum hypothesis:

Definition (Broverman-Ginsburg-Kunen-Tall, 1978)

T asserts there is a list (A, | @ < Ni) of infinite subsets of X; such
that for every uncountable B C Ny, there is a < w; with A, C B.
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Diagram of implications

Along the way, we unify the above-mentioned results, factoring the
Dowker space constructions through a new ‘guessing’ principle that
we call &ap.

¢
/C\LH Souslin tree
uzin set
\ *lD
Dowker space om -PFA

10/18



LI

We denote by L the set of all nonzero limit countable ordinals.
For every infinite ordinal 3 < w;, we denote by ag the unique
a€lsuchthata < g < a+w.
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LI

We denote by L the set of all nonzero limit countable ordinals.
For every infinite ordinal 3 < w;, we denote by ag the unique
a€lsuchthata < g < a+w.

Definition ([48])
&ap asserts there is a matrix (A, n | @ € L, n < w) such that:

0. for every a € L, (Aq,n | n < w) consists of pairwise disjoint
cofinal subsets of «;

1. for every uncountable B C Ny, there is a € L such that
sup(Aa,n N B) = a for all n < w;

2. for all (a, n) # (B, m), sup(Aa,n N Ag.m) < c.
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LI

Disjointifying initial segments
For every € < Ry, there exists a map f : (LNe¢) X w — € such that

1. f(a,n) <«

2. {Aan \ f(a,n) | (o, n) € dom(f)} is a pairwise disjoint family.
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Constructing the space
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A few promises

Our space X = (X, 7) will have underlying set w; X w.
For all B C X and j < w, we write m;(B) := {{ < w1 | (§,)) € B}
for its jt"-section.

— W1 — W1 — W1

w1 X {0} w1 X {1} w1 X {2}
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then a subset U C X will be declared to be 7-open iff for every
x € U thereis N € N, with N C U.
All x € w x w will be isolated (so Ny = {{x}}).
For every x =(8,n) in X\ (w xw), each N € N will be a subset

of (B+1) x (n+1).
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A few promises
Our space X = (X, 7) will have underlying set wy X w.
For all B C X and j < w, we write m;(B) := {{ < w1 | (§,)) € B}
for its jtM-section.
For each x € X, we shall define a weak neighborhood base N, and
then a subset U C X will be declared to be 7-open iff for every
x € U thereis N € N, with N C U.
All x € w x w will be isolated (so Ny = {{x}}).
For every x =(8,n) in X\ (w xw), each N € N will be a subset
of (4 1) x (n+1), and for every j < n, wj(N \ {x}) will be a
cofinal subset of ag.

— w1 — W1 — W1
| ] + x=02)
eS| "

w1 X {0} w1 X {1} w1 X {2}
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A few promises
Our space X = (X, 7) will have underlying set wy X w.
For all B C X and j < w, we write m;(B) := {{ < w1 | (§,)) € B}
for its jtM-section.
For each x € X, we shall define a weak neighborhood base N, and
then a subset U C X will be declared to be 7-open iff for every
x € U thereis N € N, with N C U.
All x € w x w will be isolated (so Ny = {{x}}).
For every x =(8,n) in X\ (w xw), each N € N will be a subset
of (4 1) x (n+1), and for every j < n, wj(N \ {x}) will be a
cofinal subset of ag.

Consequence 1

Forall § <wj and n < w, & X nis 7-open, and D, := w1 x (w\ n)
is 7-closed. (D, | n < w) is C-decreasing, and (),_,, Dn = 0.

The first part implies that X is not Lindelof.

n<w
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A few promises
Our space X = (X, 7) will have underlying set wy X w.
For all B C X and j < w, we write m;(B) := {{ < w1 | (§,)) € B}
for its jtM-section.
For each x € X, we shall define a weak neighborhood base N, and
then a subset U C X will be declared to be 7-open iff for every
x € U thereis N € N, with N C U.
All x € w x w will be isolated (so Ny = {{x}}).
For every x =(8,n) in X\ (w xw), each N € N will be a subset
of (4 1) x (n+1), and for every j < n, wj(N \ {x}) will be a
cofinal subset of ag.

Consequence 2: The domino effect

For every (a,j) € L x w, the T-closure of the strip [a, & +w) x {j}
covers the following tail of w; times a tail of w:

(W1 \ (@ +w)) x (w\))-
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— W1 — W1 — W1

o, + w) x {J} ot
(n\ (0 + @) x (w)))
w1x {0} wx G} wrx {i+1)
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The actual construction

Re-index (Aqn | a €L,n<w) as (Afé’n lw<B<wi,j<n<w)
such that, for every a € L,

{Aan | n<w} =2 {4, la<f<atwj<n<wh
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The actual construction
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such that, for every a € L,

{Aan | n<w} =2 {4, la<f<atwj<n<wh

So, each Aﬁ,n is a cofinal subset of ag.

» For x € w x w, let Ny = {{x}}.
» For x = (8,n) in X \w x w, let Ny := {NS | € < ag}, where

N = {3 U (A, \ o) > 4)).

j<n

*The epsilons are there to ensure that the outcome space X is Tj.

Indeed, Ny = {x}.
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The actual construction
Re-index (Aqn | a €L,n<w) as (Ajﬁ’n lw<B<wi,j<n<w)
such that, for every a € L,

{Aan | n<w} =2 {4, la<f<atwj<n<wh

So, each Aﬁ,n is a cofinal subset of ag.

» For x € w x w, let Ny = {{x}}.
» For x = (8,n) in X \w x w, let Ny := {NS | € < ag}, where

N = {3 U (A, \ o) > 4)).

j<n

and (N \ {x}) = Ajﬁ,n \ € is a cofinal subset of ag, as promised.
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The actual construction
Re-index (Aqn | a €L,n<w) as (Ajﬁ’n lw<B<wi,j<n<w)
such that, for every a € L,

{Aan | n<w} =2 {4, la<f<atwj<n<wh

So, each Ajﬁ , is a cofinal subset of ag.

» For x € w x w, let Ny = {{x}}.
» For x = (8,n) in X \w x w, let Ny := {NS | € < ag}, where

N = {3 U (A, \ o) > 4)).

j<n
Consequence 3
Given (8,n) € X \w x w and B C X, if there exists j < w such
that sup(4j , N 7;(B)) = ag, then (3, n) € cl(B).
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Verifications

Lemma
Every T-closed uncountable B C X contains a ‘tail’, i.e., there is
(7,/) € L x w such that (w1 \ 7) x (w\ j) C B.

Proof. Given an uncountable B C X, find the least j < w such that
mj(B) is uncountable.
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Verifications

Lemma

Every T-closed uncountable B C X contains a ‘tail’, i.e., there is
(7,/) € L x w such that (w1 \ 7) x (w\ j) C B.

Proof. Given an uncountable B C X, find the least j < w such that
mj(B) is uncountable. By the guessing feature of dap, pick o € L
such that sup(Aq,, N 7j(B)) = a for all n < w.

In particular, sup(AéJﬂwj(B)) = aforall 8 € [a, a+w). So, the 7-
closure of the countable set Y := BN(ax{j}) covers [a, a+w)x{j}.
By the domino effect, the 7-closure of Y moreover covers

(Wi (a+w)) x(w\)). O

The above proof shows that the space is hereditary separable, so
altogether X is an S-space.
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Verifications (cont.)

To verify normality, let Ky, K1 be two disjoint 7-closed subsets of
X. As any uncountable closed set contains a ‘tail’, at least one of
the sets must be countable. So, one of these sets is covered by

€ X w for some € € L. Now, construct two disjoint 7-open sets

Vo, V4 using the feature of disjointifying initial segments.
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Verifications (cont.)

To verify normality, let Ky, K1 be two disjoint 7-closed subsets of
X. As any uncountable closed set contains a ‘tail’, at least one of
the sets must be countable. So, one of these sets is covered by

€ X w for some € € L. Now, construct two disjoint 7-open sets

Vo, V4 using the feature of disjointifying initial segments.

Finally, to prove that X is Dowker, recall that each

Dy := w1 x (w\ n) is an uncountable 7-closed set, and that

ﬂn<w D, = (). We need to show that, if, for every n < w, U, is
some open set covering Dy, then (N, U, # 0.

For each n < w, F,:= X\ U, is a closed set disjoint from D,,.
Since D, is uncountable, F,, must be countable. So Un<w F, is
countable, and hence (., Ur = X \ U, Fn is nonempty. [
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Thank you!



