Winter School in Abstract Analysis 2023 section Set Theory Topology seminar

Roy Shalev, Bar-Ilan University

Plan for today

I'll be reporting on the following papers:

- [48] Assaf Rinot and R.S., A guessing principle from a Souslin tree, with applications to topology, accepted to Topology Appl.
- [54] Assaf Rinot, R.S and Stevo Todorčević, *A new small Dowker space*, submitted April 2022.

A standard question in mathematics asks what properties are preserved under taking products.

A standard question in mathematics asks what properties are preserved under taking products.

• The product of two regular topological spaces is regular.

A standard question in mathematics asks what properties are preserved under taking products.

• The product of two regular topological spaces is regular.

In contrast, the Sorgenfrey line \mathbb{R}_I is a regular Lindelöf (hence normal) space whose square is not normal (hence, non-Lindelöf).

The property of a space \mathbb{X} called binormal, that the product of \mathbb{X} with the closed unit interval be normal, had long been a standard hypothesis for certain homotopy extension theorems.

The property of a space $\mathbb X$ called binormal, that the product of $\mathbb X$ with the closed unit interval be normal, had long been a standard hypothesis for certain homotopy extension theorems.

This raise the question:

The property of a space $\mathbb X$ called binormal, that the product of $\mathbb X$ with the closed unit interval be normal, had long been a standard hypothesis for certain homotopy extension theorems.

This raise the question:

Question (C. H. Dowker, 1951)

Is there a normal topological space whose product with the unit interval is not normal?

Such a space is called **Dowker**.

The Dowker space problem

Theorem (C. H. Dowker, 1951)

A normal space \mathbb{X} is Dowker iff there exists a \subseteq -decreasing sequence $\langle D_n \mid n < \omega \rangle$ of closed sets s.t.:

- 1. $\bigcap_{n<\omega} D_n=\emptyset$;
- 2. if, for every $n < \omega$, U_n is some open set covering D_n , then $\bigcap_{n < \omega} U_n \neq \emptyset$.

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size \aleph_1 .

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size \aleph_1 .

Curiously, the existence of a Souslin tree was only shown to be consistent around 1967.

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size \aleph_1 .

Curiously, the existence of a Souslin tree was only shown to be consistent around 1967.

Does the existence of a Dowker space follow from ZFC?

Theorem (M. E. Rudin, 1972)

There exists a Dowker space of size $(\aleph_{\omega+1})^{\aleph_0}$.

https://yewtu.be/TL-QWMr7-9E

Theorem (Balogh, 1996)

There exists a Dowker space of size 2^{\aleph_0} .

Theorem (Balogh, 1996)

There exists a Dowker space of size 2^{\aleph_0} .

Theorem (Kojman-Shelah, 1998)

There exists a Dowker space of size $\aleph_{\omega+1}$.

Theorem (Balogh, 1996)

There exists a Dowker space of size 2^{\aleph_0} .

Theorem (Kojman-Shelah, 1998)

There exists a Dowker space of size $\aleph_{\omega+1}$.

Whose space is actually smaller?

Theorem (Balogh, 1996)

There exists a Dowker space of size 2^{\aleph_0} .

Theorem (Kojman-Shelah, 1998)

There exists a Dowker space of size $\aleph_{\omega+1}$.

Whose space is actually smaller?

Conjecture (M. E. Rudin, 1990)

There exists a Dowker space of size \aleph_1 .

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include CH (Juhász, Kunen and Rudin, 1976),

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include CH (Juhász, Kunen and Rudin, 1976), \clubsuit (de Caux, 1977),

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include CH (Juhász, Kunen and Rudin, 1976), \clubsuit (de Caux, 1977), a Luzin set (Todorčević, 1989),

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include CH (Juhász, Kunen and Rudin, 1976), \clubsuit (de Caux, 1977), a Luzin set (Todorčević, 1989), and a certain tailored instance of a strong club-guessing principle (Hernńdez-Hernńdez and Szeptycki, 2009).

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include CH (Juhász, Kunen and Rudin, 1976), \clubsuit (de Caux, 1977), a Luzin set (Todorčević, 1989), and a certain tailored instance of a strong club-guessing principle (Hernńdez-Hernńdez and Szeptycki, 2009).

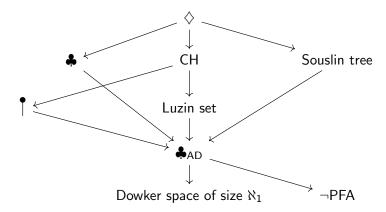
In [54], we present a new sufficient condition, namely, the following weakening of the continuum hypothesis:

Definition (Broverman-Ginsburg-Kunen-Tall, 1978)

 ullet asserts there is a list $\langle A_{\alpha} \mid \alpha < \aleph_1 \rangle$ of infinite subsets of \aleph_1 such that for every uncountable $B \subseteq \aleph_1$, there is $\alpha < \omega_1$ with $A_{\alpha} \subseteq B$.

Diagram of implications

Along the way, we unify the above-mentioned results, factoring the Dowker space constructions through a new 'guessing' principle that we call \clubsuit_{AD} .



Definition ([48])

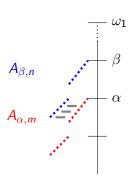
- \clubsuit_{AD} asserts there is a matrix $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ such that:
 - 0. for every $\alpha \in L$, $\langle A_{\alpha,n} \mid n < \omega \rangle$ consists of pairwise disjoint cofinal subsets of α ;

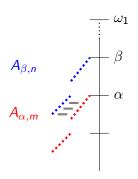
Definition ([48])

- \clubsuit_{AD} asserts there is a matrix $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ such that:
 - 0. for every $\alpha \in L$, $\langle A_{\alpha,n} \mid n < \omega \rangle$ consists of pairwise disjoint cofinal subsets of α ;
 - 1. for every uncountable $B \subseteq \aleph_1$, there is $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap B) = \alpha$ for all $n < \omega$;

Definition ([48])

- \clubsuit_{AD} asserts there is a matrix $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ such that:
 - 0. for every $\alpha \in L$, $\langle A_{\alpha,n} \mid n < \omega \rangle$ consists of pairwise disjoint cofinal subsets of α ;
 - 1. for every uncountable $B \subseteq \aleph_1$, there is $\alpha \in \mathsf{L}$ such that $\sup(A_{\alpha,n} \cap B) = \alpha$ for all $n < \omega$;
 - 2. for all $(\alpha, n) \neq (\beta, m)$, $\sup(A_{\alpha, n} \cap A_{\beta, m}) < \alpha$.





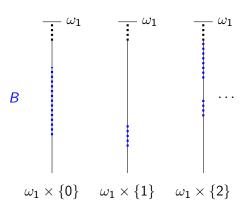
Disjointifying initial segments

For every $\epsilon < \aleph_1$, there exists a map $f : (\mathsf{L} \cap \epsilon) \times \omega \to \epsilon$ such that

- 1. $f(\alpha, n) < \alpha$;
- 2. $\{A_{\alpha,n} \setminus f(\alpha,n) \mid (\alpha,n) \in \text{dom}(f)\}$ is a pairwise disjoint family.

Constructing the space

Our space $\mathbb{X}=(X,\tau)$ will have underlying set $\omega_1\times\omega$. For all $B\subseteq X$ and $j<\omega$, we write $\pi_j(B):=\{\xi<\omega_1\mid (\xi,j)\in B\}$ for its j^{th} -section.



Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{ \xi < \omega_1 \mid (\xi, j) \in B \}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{ \xi < \omega_1 \mid (\xi, j) \in B \}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{ \xi < \omega_1 \mid (\xi, j) \in B \}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

For every $x = (\beta, n)$ in $X \setminus (\omega \times \omega)$, each $N \in \mathcal{N}_x$ will be a subset of $(\beta + 1) \times (n + 1)$.

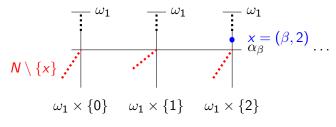
Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{ \xi < \omega_1 \mid (\xi, j) \in B \}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

For every $x = (\beta, n)$ in $X \setminus (\omega \times \omega)$, each $N \in \mathcal{N}_X$ will be a subset of $(\beta + 1) \times (n + 1)$, and for every $j \leq n$, $\pi_j(N \setminus \{x\})$ will be a cofinal subset of α_β .



A few promises

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{ \xi < \omega_1 \mid (\xi, j) \in B \}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

For every $x = (\beta, n)$ in $X \setminus (\omega \times \omega)$, each $N \in \mathcal{N}_X$ will be a subset of $(\beta + 1) \times (n + 1)$, and for every $j \leq n$, $\pi_j(N \setminus \{x\})$ will be a cofinal subset of α_β .

Consequence 1

For all $\delta < \omega_1$ and $n < \omega$, $\delta \times n$ is τ -open, and $D_n := \omega_1 \times (\omega \setminus n)$ is τ -closed. $\langle D_n \mid n < \omega \rangle$ is \subseteq -decreasing, and $\bigcap_{n < \omega} D_n = \emptyset$. The first part implies that $\mathbb X$ is not Lindelöf.

A few promises

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{ \xi < \omega_1 \mid (\xi, j) \in B \}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

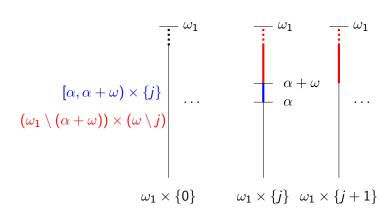
All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

For every $x = (\beta, n)$ in $X \setminus (\omega \times \omega)$, each $N \in \mathcal{N}_X$ will be a subset of $(\beta + 1) \times (n + 1)$, and for every $j \leq n$, $\pi_j(N \setminus \{x\})$ will be a cofinal subset of α_β .

Consequence 2: The domino effect

For every $(\alpha, j) \in L \times \omega$, the τ -closure of the strip $[\alpha, \alpha + \omega) \times \{j\}$ covers the following tail of ω_1 times a tail of ω :

$$(\omega_1 \setminus (\alpha + \omega)) \times (\omega \setminus j).$$



Re-index $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in \mathsf{L}$,

$${A_{\alpha,n} \mid n < \omega} \stackrel{1-1}{=} {A_{\beta,n}^j \mid \alpha \leq \beta < \alpha + \omega, j \leq n < \omega}.$$

Re-index $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in \mathsf{L}$,

$${A_{\alpha,n} \mid n < \omega} \stackrel{1-1}{=} {A_{\beta,n}^j \mid \alpha \leq \beta < \alpha + \omega, j \leq n < \omega}.$$

So, each $A^{j}_{\beta,n}$ is a cofinal subset of α_{β} .

Re-index $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in \mathsf{L}$,

$${A_{\alpha,n} \mid n < \omega} \stackrel{1-1}{=} {A_{\beta,n}^j \mid \alpha \leq \beta < \alpha + \omega, j \leq n < \omega}.$$

So, each $A^{j}_{\beta,n}$ is a cofinal subset of α_{β} .

- ▶ For $x \in \omega \times \omega$, let $\mathcal{N}_x = \{\{x\}\}$.
- ▶ For $x = (\beta, n)$ in $X \setminus \omega \times \omega$, let $\mathcal{N}_x := \{N_x^{\epsilon} \mid \epsilon < \alpha_{\beta}\}$, where

$$N_x^{\epsilon} := \{x\} \cup \bigcup_{j \leq n} ((A_{\beta,n}^j \setminus \epsilon) \times \{j\}).$$

Re-index $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in \mathsf{L}$,

$${A_{\alpha,n} \mid n < \omega} \stackrel{1-1}{=} {A_{\beta,n}^j \mid \alpha \leq \beta < \alpha + \omega, j \leq n < \omega}.$$

So, each $A^{j}_{\beta,n}$ is a cofinal subset of α_{β} .

- ▶ For $x \in \omega \times \omega$, let $\mathcal{N}_x = \{\{x\}\}$.
- ▶ For $x = (\beta, n)$ in $X \setminus \omega \times \omega$, let $\mathcal{N}_x := \{N_x^{\epsilon} \mid \epsilon < \alpha_{\beta}\}$, where

$$N_x^{\epsilon} := \{x\} \cup \bigcup_{j \leq n} ((A_{\beta,n}^j \setminus \epsilon) \times \{j\}).$$

*The epsilons are there to ensure that the outcome space $\mathbb X$ is $\mathcal T_1$. Indeed, $\bigcap \mathcal N_{\mathsf x} = \{x\}.$

Re-index $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in \mathsf{L}$,

$${A_{\alpha,n} \mid n < \omega} \stackrel{1-1}{=} {A_{\beta,n}^j \mid \alpha \leq \beta < \alpha + \omega, j \leq n < \omega}.$$

So, each $A^{j}_{\beta,n}$ is a cofinal subset of α_{β} .

- ▶ For $x \in \omega \times \omega$, let $\mathcal{N}_x = \{\{x\}\}$.
- ▶ For $x = (\beta, n)$ in $X \setminus \omega \times \omega$, let $\mathcal{N}_x := \{N_x^{\epsilon} \mid \epsilon < \alpha_{\beta}\}$, where

$$N_x^{\epsilon} := \{x\} \cup \bigcup_{j \leq n} ((A_{\beta,n}^j \setminus \epsilon) \times \{j\}).$$

and $\pi_j(N_x^{\epsilon} \setminus \{x\}) = A_{\beta,n}^j \setminus \epsilon$ is a cofinal subset of α_{β} , as promised.

Re-index $\langle A_{\alpha,n} \mid \alpha \in \mathsf{L}, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in \mathsf{L}$,

$${A_{\alpha,n} \mid n < \omega} \stackrel{1-1}{=} {A_{\beta,n}^j \mid \alpha \leq \beta < \alpha + \omega, j \leq n < \omega}.$$

So, each $A^{j}_{\beta,n}$ is a cofinal subset of α_{β} .

- ▶ For $x \in \omega \times \omega$, let $\mathcal{N}_x = \{\{x\}\}$.
- ▶ For $x = (\beta, n)$ in $X \setminus \omega \times \omega$, let $\mathcal{N}_x := \{N_x^{\epsilon} \mid \epsilon < \alpha_{\beta}\}$, where

$$N_x^{\epsilon} := \{x\} \cup \bigcup_{j \leq n} ((A_{\beta,n}^j \setminus \epsilon) \times \{j\}).$$

Consequence 3

Given $(\beta, n) \in X \setminus \omega \times \omega$ and $B \subseteq X$, if there exists $j < \omega$ such that $\sup(A_{\beta,n}^{J} \cap \pi_{j}(B)) = \alpha_{\beta}$, then $(\beta, n) \in cl(B)$.

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$.

Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable.

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$.

Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable. By the guessing feature of A_{AD} , pick $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap \pi_j(B)) = \alpha$ for all $n < \omega$.

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$.

Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable. By the guessing feature of A_{AD} , pick $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap \pi_j(B)) = \alpha$ for all $n < \omega$.

In particular, $\sup(A^j_{\beta,j} \cap \pi_j(B)) = \alpha$ for all $\beta \in [\alpha, \alpha + \omega)$. So, the τ -closure of the countable set $Y := B \cap (\alpha \times \{j\})$ covers $[\alpha, \alpha + \omega) \times \{j\}$.

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$.

Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable. By the guessing feature of \mathbb{A}_{AD} , pick $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap \pi_j(B)) = \alpha$ for all $n < \omega$.

In particular, $\sup(A_{\beta,j}^j \cap \pi_j(B)) = \alpha$ for all $\beta \in [\alpha, \alpha + \omega)$. So, the τ -closure of the countable set $Y := B \cap (\alpha \times \{j\})$ covers $[\alpha, \alpha + \omega) \times \{j\}$. By the domino effect, the τ -closure of Y moreover covers

$$(\omega_1 \setminus (\alpha + \omega)) \times (\omega \setminus j)$$
. \square

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$.

Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable. By the guessing feature of A_{AD} , pick $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap \pi_j(B)) = \alpha$ for all $n < \omega$.

In particular, $\sup(A'_{\beta,j}\cap\pi_j(B))=\alpha$ for all $\beta\in[\alpha,\alpha+\omega)$. So, the τ -closure of the countable set $Y:=B\cap(\alpha\times\{j\})$ covers $[\alpha,\alpha+\omega)\times\{j\}$. By the domino effect, the τ -closure of Y moreover covers

$$(\omega_1 \setminus (\alpha + \omega)) \times (\omega \setminus j)$$
.

The above proof shows that the space is hereditary separable, so altogether $\mathbb X$ is an S-space.

Verifications (cont.)

To verify normality, let K_0 , K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable. So, one of these sets is covered by $\epsilon \times \omega$ for some $\epsilon \in L$. Now, construct two disjoint τ -open sets V_0 , V_1 using the feature of disjointifying initial segments.

Verifications (cont.)

To verify normality, let K_0 , K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable. So, one of these sets is covered by $\epsilon \times \omega$ for some $\epsilon \in L$. Now, construct two disjoint τ -open sets V_0 , V_1 using the feature of disjointifying initial segments.

Finally, to prove that $\mathbb X$ is Dowker, recall that each $D_n:=\omega_1\times (\omega\setminus n)$ is an uncountable τ -closed set, and that $\bigcap_{n<\omega}D_n=\emptyset$. We need to show that, if, for every $n<\omega$, U_n is some open set covering D_n , then $\bigcap_{n<\omega}U_n\neq\emptyset$.

Verifications (cont.)

To verify normality, let K_0, K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable. So, one of these sets is covered by $\epsilon \times \omega$ for some $\epsilon \in L$. Now, construct two disjoint τ -open sets V_0, V_1 using the feature of disjointifying initial segments.

Finally, to prove that $\mathbb X$ is Dowker, recall that each $D_n:=\omega_1\times (\omega\setminus n)$ is an uncountable τ -closed set, and that $\bigcap_{n<\omega}D_n=\emptyset$. We need to show that, if, for every $n<\omega$, U_n is some open set covering D_n , then $\bigcap_{n<\omega}U_n\neq\emptyset$. For each $n<\omega$, $F_n:=X\setminus U_n$ is a closed set disjoint from D_n . Since D_n is uncountable, F_n must be countable. So $\bigcup_{n<\omega}F_n$ is countable, and hence $\bigcap_{n<\omega}U_n=X\setminus\bigcup_{n<\omega}F_n$ is nonempty.

Thank you!